
OPERATING SYSTEM 

Unit 3 : Process Coordination 

 

Basic Concepts of Concurrency: 

A concurrent program specifies two or more sequential programs (a sequential 

program specifies sequential execution of a list of statements) that may be 

executed concurrently as parallel processes. For example, an airline reservation 

system that involves processing transactions from many terminals has a natural 

specifications as a concurrent program in which each terminal is controlled by its 

own sequential process. Even when processes are not executed simultaneously, it 

is often easier to structure as a collection of cooperating sequential processes 

rather than as a single sequential program. 

 

The operating system consists of a collection of such processes which are basically 

two types: 

• Operating system processes : Those that execute system code. 

• User processes : Those that execute user's code.  

 

A simple batch operating system can be viewed as 3 processes -a reader process, 

an executor process and a printer process. The reader reads cards from card 

reader and places card images in an input buffer. The executor process reads card 

images from input buffer and performs the specified computation and store the 

result in an output buffer. The printer process retrieves the data from the output 

buffer and writes them to a printer Concurrent processing is the basis of operating 

system which supports multiprogramming. 

 

The operating system supports concurrent execution of a program without 

necessarily supporting elaborate form of memory and file management. This form 

of operation is also known as multitasking. Multiprogramming is a more general 

concept in operating system that supports memory management and file 

management features, in addition to supporting concurrent execution of programs. 

 

 



Basic Concepts of Interprocess Communication and Synchronization: 

 
In order to cooperate, concurrently executing processes must communicate and 

synchronize. Interprocess communication is based on the use of shared 

variables (variables that can be referenced by more than one process) or 

message passing. 

 
Synchronization is often necessary when processes communicate. Processes are 

executed with unpredictable speeds. Yet to communicate one process must 

perform some action such as setting the value of a variable or sending a message 

that the other detects. This only works if the events perform an action or detect an 

action are constrained to happen in that order. Thus one can view synchronization 

as a set of constraints on the ordering of events. The programmer employs a 

synchronization mechanism to delay execution of a process in order to satisfy such 

constraints. 

 
To make this concept more clear, consider the batch operating system again. A 

shared buffer is used for communication between the reader process and the 

executor process. These processes must be synchronized so that, for example, the 

executor process never attempts to read data from the input if the buffer is 

empty.  

 

Race Condition: 

Processes that are working together often share some common storage that one 

can read and write. The shared storage may be in main memory or it may be a 

shared file. Processes frequently need to communicate with other processes. When 

a user wants to read from a file, it must tell the file process what it wants, then 

the file process has to inform the disk process to read the required block. 

 

When a process wants to print a file, it enters the file name in a special spooler 

directory. Another process, the printer process, periodically checks to see if 

there are any files to be printed, and if there are it prints them and then removes 

their names from the directory. 

 



Imagine that the spooler directory has a large number of slots, numbered 0, 1, 2, 

…, each one capable of holding a file name. Also imagine that there are two shared 

variables, out, which points to the next file to be printed, and in, which points to 

the next free slot in the directory and these are available to all processes. At a 

certain instant, slot 0 to 3 are empty and slots 4 to 6 are full. More or less 

simultaneously, process A and B decided to queue a file for printing. 

 

 Spooler directory 

 

 

 4          abc 

  

 5        prog.c 

 

 6        prog.n 

 

 7            

 

 

 

 

Process A reads in and stores the value 7 in a local variable called 

next_free_slot. Just then the CPU decides that process A has run long enough, 

so it switches to process B. Process B also reads in and also gets a 7 so stores the 

name of its file in slot 7 and updates in to be an 8. When process A runs again, 

starting from the place it left off, it finds a 7 in next_free_slot and writes its file 

name in slot 7, by erasing the name that process B just put there and then sets in 

to 8. Situations like this, where two or more processes are reading or writing some 

shared data and the final result depends on who runs precisely when, are called 

race conditions. 
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Serialization (To avoid concurrency related problem) 

Make an operating system not to perform several tasks in parallel. 

Two strategies to serializing processes in a multitasking environment: 

•   The Scheduler can be disabled 

•    A Protocol can be introduced 

The Scheduler can be disabled 

Scheduler can be disabled for a short period of time, to prevent control being 

given to another process during a critical action like modifying shared data. This 

will be inefficient on multiprocessor machines, since all other processors have to 

be halted every time one wishes to execute a critical section. 

 

A Protocol can be introduced 

A protocol can be introduced which all programs sharing data must obey. The 

protocol ensures that processes have to queue up to gain access to shared data. 

 

The Critical-Section Problem: 

Consider a system consisting of n processes. Each process has  a segment of code 

called critical section, in which the process may be changing common variables, 

updating a table, writing a file, and so on. When one process is executing in its 

critical section, no other process is to be allowed to execute in its critical section. 

That is, no two processes are executing in their critical sections at the same time. 

The section of code in a process that request permission to enter into its critical 

section is called entry section and the critical section may be followed by an exit 

section. The remaining code is the remainder section. 

When one process is executing in its critical section, no other process is to be 

executed in its critical section. Thus, the execution of critical sections by the 

processes is mutually exclusive in time.  

 

 

 

 

 

 



 

Do 

{ 

       Entry Section  -  Section of code that request permission to 

enter its critical section. 

       Critical Section - It is a part of code in which it is necessary to 

have exclusive access to shared data. 

       Exit Section - Code for tasks just after exiting from the 

critical section. 

       Remainder Section - The remaining code. 

 

} while (TRUE); 

 

Fig: General structure of a typical process 

 

A solution to the critical-section problem must satisfy the following three 

requirements: 

 

o Mutual Exclusion: If process Pi is executing in its critical section, then no 

other processes can be executing in their critical sections. 

 

o Progress: If no process is executing in its critical section and some 

processes wish to enter their critical sections, then only those processes that 

are not executing in their remainder section can participate in the decision 

on which will enter its critical section next, and this selection can not be 

postponed indefinitely. 

 

o Bounded Waiting: There exists a bound on the number of times that other 

processes are allowed to enter their critical sections after a process has 

made a request to enter its critical section and before that request is 

granted. 

 

 

 



Mutual Exclusion: 

Processes frequently need to communicate with other processes. When a user 

wants to read from a file, it must tell the file process what it wants, then the file 

process has to inform the disk process to read the required block. 

 

Processes that are working together often share some common storage that one 

can read and write. The shared storage may be in main memory or it may be a 

shared file. Each process has segment of code, called a critical section, which 

accesses shared memory or files. The key issue involving shared memory or 

shared files is to find way to prohibit more than one process from reading and 

writing the shared data at the same time. What we need is mutual exclusion - 

some way of making sure that if one process is executing in its critical section, the 

other processes will be excluded from doing the same thing.  

 

An algorithm to support mutual exclusion. This is applicable for two processes 

only. 

 

Module Mutex 

var 

 P1busy, P2busy : boolean; 

Process P1 

begin 

 while true do 

 begin 

  P1busy :=true; 

  While P2busy do {keep testing}; 

  critical.-,section; 

  P1busy:=false; 

  Other_P1busy_Processing 

 end {while} 

end; {P1} 

 

Process P2 



begin 

 while true do 

 begin 

  P2busy :=true; 

  While P1busy do {keep testing}; 

  critical.-,section; 

  P2busy:=false; 

  Other_P2busy_Processing 

 end {while} 

end; {P2} 

 

{Parent process} 

begin (mutex) 

 P1busy:=false; 

 P2busy:=false; 

 Initiate P1, P2 

End (mutex) 

 

Program : Mutual Exclusion Algorithm 

 

P1 first sets P1busy and then tests P2busy to determine what to do next. When it 

finds P2busy to be false, process P1 may safely proceed to the Critical section 

knowing that no matter how the two processes may be interleaved, process P2 is 

certain to find P2busy set and to stay away from the critical section. The single 

change ensures mutual exclusion.  

 

But consider a case where P1 wishes to enter the critical section and sets P1busy 

to indicate the fact. If process P2 wishes to enter the critical section at the same 

time and pre-empts process P1 just before P1 tests P2busy. 

 

Process P2 may set P2busy and start looping while waiting for P1busy to become 

false. When control is eventually returned to Process P1, it finds P2busy set and 



starts looping while it waits for P2busy to become false. And so both processes are 

looping forever, each awaiting the other one to clear the way.  

 

In order to remove this kind of behavior, we must add another requirement to 

occur in our algorithm. When more than one process wishes to enter the critical 

section, the decision to grant entrance to one of them must be made in finite time. 

 

Synchronization Hardware: 

 
The critical-section problem can be solved in a uni-processor environment if we 

can forbid interrupts to occur while a shared variable is being modified. In this 

manner, we could be sure that the current sequence of instructions would be 

allowed to execute in order without preemption. No other instructions would be 

run, so no unexpected modifications could be made to the shared variable.  

 

This solution is not feasible in a  multiprocessor environment. Disabling interrupts 

on a multiprocessor can be time-consuming, as the message is passed to all the 

processors. This message passing delays entry into each critical section, and 

system efficiency decreases. 

 

Many machines provide special hardware instructions that allow us either to test 

and modify the content of a word or to swap the contents of two words, atomically 

-  as one uninterruptible unit. These special instructions can be used to solve the 

critical-section problem. 

 

The TestAndSet instruction can be defined as follows: 

Boolean TestAndSet (Boolean &target) 

{ 

 Boolean  rv = target; 

 Target = true; 

 Return  rv; 

} 

Fig : Definition of the TestAndSet instruction. 



The important characteristic is that this instruction is executed atomically. Thus, if 

two TestAndSet instructions are executed simultaneously, each on a different CPU, 

they will be executed sequentially in some arbitrary order. If the machine supports 

the TestAndSet instruction, then we can implement mutual exclusion by declaring, 

a Boolean variable lock, initialized to false. The structure of the process is as 

follows: 

do { 

 while (TestAndSet(lock)); 

 critical section 

 lock = false; 

 remainder section 

}while(1) 

Fig : Mutual-exclusion implementation with TestAndSet. 

 

The Swap instruction can be defined as follows: 

void  Swap(Boolean &a, Boolean &b) 

{ 

 Boolean temp = a; 

 a = b; 

 b = temp; 

} 

Fig : Definition of the Swap instruction. 

 

It operates on the contents of two words and it is executed atomically. If the 

machine supports the Swap instruction, then the mutual exclusion can be provided 

by declaring a variable lock and is initialized to false. In addition, each process 

also has a local Boolean variable key. The structure of the process is as follows: 

do { 

 key = true; 

 while (key == true) 

  Swap(lock, key); 

 Critical section 

 lock = false; 

 remainder section 



}while(1); 

 

These algorithms do not satisfy the bounded-waiting requirement. The following is 

an algorithm that uses the TestAndSet instruction satisfies all the critical-section 

requirements. The common data structures are 

Boolean waiting[n]; 

Boolean lock; 

These data structures are initialized to false. 

 

do { 

 waiting[i] = true; 

 key = ture; 

 while (waiting[i] &&  key) 

  key = TestAndSet(lock); 

 waiting[i] = flase; 

 

 critical section 

 

 j = (i+1) % n; 

 while ((j != i) && !waiting[j]) 

  j = (j+1) % n; 

 if (j == i) 

  lock = false; 

 else 

  waiting[j] = false; 

 

 remainder section 

} while(1); 

 

Fig : Bounded-waiting mutual exclusion with TestAndSet. 

 

To prove that the mutual exclusion requirement is met, note that process Pi can 

enter its critical section only if either waiting[i] == flase or key == flase. The 

value of key can become false only if the TestAndSet is executed. The first process 



to execute the TestAndSet will find key == flase; all others must wait. The 

variable waiting[i] can become false only if another process leaves its critical 

section; only one waiting[i] is set to false, maintaining the mutual exclusion 

requirement. 

 

To prove the progress requirement is met, note that a process exiting the critical 

section either sets lock to false, or sets waiting[i] to false. Both allow a process 

that is waiting to enter its critical section to proceed. 

 

To prove the bounded-waiting requirement is met, when a process leaves its 

critical section, it scans the array waiting in the cyclic ordering (i+1, i+2, … n-1, 0, 

1, …, i-1). It designates the first process in this ordering that is in the entry 

section (waiting[j] == true) as the next one to enter the critical section. Any 

process waiting to enter its critical section will thus do so within n-1 turns. 

 

Semaphores: 

 
To overcome the mutual exclusion problem, a synchronization tool called 

semaphore was proposed by Dijkstra which gained wide acceptance and 

implemented in several commercial operating system through system calls or as 

built-in functions. 

 
A semaphore is a variable which accepts non-negative integer values and except 

for initialization may be accessed and manipulated through two primitive 

operations - wait and signal (originally defined as P and V respectively). These 

names come from the Dutch words Problem (to test) and Verogen (to increment). 

The two primitives take only argument as the semaphore variable, and may be 

defined as follows. 

 

a. Wait(s): 

while S <= 0 do (keep testing); 

S: = S-1; 

wait operation decrements the value of semaphore variable as soon as it 

would become non-negative. 



 

b. Signal(s) S:= S+1; 

Signal operation increments the value of semaphore variable. 

 

Modifications to the integer value of the semaphore in the wait and signal 

operations are executed indivisibly. That is, when one process modifies the 

semaphore no other process can simultaneously modify the same semaphore 

value. In addition in the case of wait(s), the testing of the integer value of S (S 

<= 0) and its possible modification (S :=S-1) must also be executed without any 

interruption. 

 

Operating systems often distinguish between counting and binary semaphores. 

The value of a counting semaphore can range over an unrestricted domain. The 

value of a binary semaphore can range only between 0 and 1. On some 

systems, binary semaphores are known as mutex locks, as they are locks that 

provide mutual exclusion. 

 

We can use binary semaphores to deal with the critical-section problem for 

multiple processes. Counting semaphores can be used to control access to a given 

resource consisting of a finite number of instances. The semaphore is initialized to 

the number of resources available. Each process that wishes to use a resource 

perform a wait() operation on the semaphore (thereby decrementing the count). 

When a process releases a resource, it perform a signal() operation (incrementing 

the count). When the count for the semaphore goes to 0, all resources are being 

used. After that, processes that wish to use a resource will block until the count 

becomes greater than 0. 

 

Program 2 demonstrates the functioning of semaphores. In this program, there 

are 3 processes to trying to share a common resource which is being protected by 

a binary semaphore (bsem). (A binary semaphore is a variable which contains only 

values of 0 and 1) by enforcing its use in mutually exclusive fashion. Each process 

ensures the integrity of its critical section by opening it with a WAIT operation and 

closing with a SIGNAL operation on the related semaphore, bsem in our example. 



This way any number of concurrent processor might share the resource provided 

each of these process use wait and signal operation. 

 

The parent process in the program first initializes binary semaphore variable bsem 

to 1 indicating that the source is available. As shown in the table (figure 8) at time 

T1 no process is active to share the resource. But at time T2 all the three 

processes become active and want to enter their critical sections to share the 

resource by running the wait operation. At T2, the bsem is decremented to 0 

which indicates that some processes has been given permission to enter the 

critical section. At time T3, we find that it is P1 which has been given some 

permission. One important thing is to be noted that only one process is allowed by 

semaphore at a time to the critical section. 

 

Once P1 is given the permission, it prevents other processes P2 & P3 to read the 

value of bsem as 1 till the wait operation of P1 decrements bsem to 0. This is why 

wait operation is executed without interruption. 

After grabbing the control from semaphore P1 starts sharing the resource which is 

depicted at time T3. At T4, P1 executes signal operation to release the resource 

and comes out of its critical section. As shown in the table that the value of bsem 

becomes 1 since the resource is now free. 

The two remaining processes P2 and P3 have an equal chance to compete the 

resource. In our example, process P3 become the next to enter the critical section 

and to use the shared resource. At time T7, process P3 releases the resource and 

semaphore variable bsem again becomes 1. At this time, the two other processes 

P1 and P2 will attempt to compete for the resource and they have equal chance to 

get access. 

 

In our example, it is P2 which gets the chance but it might happens one of the 

three processes could have never got the chance.  

 

 

 

 



module Sem-mutex var bsem : semaphore; {binary 
semaphore) 
process P1; 

Begin 

   while true do 

      wait (bsem); 
      Critical_section 
      Signal (bsem); 

      The rest_of P1_Processing 

end; (P1) 

 

process P2; 

Begin 
   while true do 

      wait (bsem); 
      Critical-section; 
      signal (bsem); 
      The rest of P2-Processing 

end; (P2) 
 

process P3; 

Begin 
   while true do 

      wait (bsem); 
      Critical-section; 
      signal (bsem); 
      The rest of P3-Processing 

end; (P3) 
 

(Parent process) 

begin (sem-mutex) 
    bsem:= 1; (free) 
    initiate P1, P2, P3; 

end; (Mutux) 

Program 2. Mutual Exclusion with Semaphore 



 
Figure 8: Run time behaviour of Process

We also present a table (figure 8) showing the run time behaviour of three 

processes and functioning of semaphore. Each column of the table show the 

activity of a particular process and the value of a semaphore after certain action 

has been taken on this process. 

 

 

 

 

 

 

 



Classical Problems of Synchronization 

• Bounded-Buffer Problem 
 

To avoid the occurrence of race condition, we present a solution to the bounded-

buffer problem using semaphores. The biggest advantage of this solution using 

semaphores is that it not only avoids the occurrence of race condition but also 

allows to have size items in the buffer at the same time, thus, eliminating the 

shortcomings of the solutions using shared memory. The following three 

semaphores are used in this solution. 

 
We assume that the pool consists of n buffers, each capable of holding one item. 

The mutex semaphore provides mutual exclusion for accesses to the buffer pool 

and is initialized to the value 1. The empty and full semaphores count the number 

of empty and full buffers. The semaphore empty is initialized to the value n; the 

semaphore full if initialized to the value 0. 

 
The structure of the producer process 

           while (true)  { 

                         //   produce an item 

                   wait (empty); 

                   wait (mutex); 

                         //  add the item to the  buffer 

                    signal (mutex); 

                    signal (full); 

              } 

The structure of the consumer process 

           while (true) { 

                    wait (full); 

                    wait (mutex); 

                             //  remove an item from  buffer 

                    signal (mutex); 



                    signal (empty); 

                //  consume the removed item 

              } 

We can interpret these codes as the producer producing full buffers for the 

consumer or as the consumer producing empty buffers for the producer. 

 
 
 
• Readers and Writers Problem 

 

Concurrently executing processes that are sharing a data object, such as a file or a 

variable, fall into two groups: readers and writers. The processes in the readers 

group want only to read the contents of the shared object, whereas, the 

processes in writers group want to update (read and write) the value of shared 

object. There is no problem if multiple readers access the shared object 

simultaneously. However, if a writer and some other process (either a reader or 

writer) access the shared object simultaneously, data may become inconsistent. 

 

To ensure that such a problem does not arise, we must guarantee that when a 

writer is accessing the shared object, no reader or writer accesses that shared 

object. This synchronization problem is termed as readers-writers problem. The 

readers-writers problem has several variations. The simplest one referred to as the  

first reader-writer problem, requires that no reader will be kept waiting unless a 

writer has already obtained permission to use the shared object. In other words, 

no reader should wait for others readers to finish simply because a writer is 

waiting. The second readers-writers problem requires that, once a writer is ready, 

that writer performs its write as soon as possible. In other words, if a writer is 

waiting to access the object, no new readers may start reading. 

 

A solution to either problem may result in starvation. In the first case writers may 

starve, in the second case, readers may starve.  

 



Following is a solution to the first readers-writers problem. The reader process 

share the following data structures: 

semaphore mutex, wrt; 

int readcount; 

  

The semaphore mutex and wrt are initialized to 1 and readcount is initialized to 0. 

The semaphore wrt is common to both reader and writer processes. The mutex 

semaphore is used to ensure mutual exclusion when the variable readcount is 

updated. The readcount variable keeps track of how many processes are currently 

reading the object. The semaphore wrt functions as a mutual-exclusion semaphore 

for the writers. It is also used by the first or last reader that enters or exists the 

critical section. It is not used by readers who enter or exit while other readers are 

in their critical section. 

 

If a writer is in the critical section and n readers are waiting, then one reader is 

queued on wrt, and n-1 readers are queued on mutex. Also, observe that, when a 

writer executes signal(wrt), we may resume the execution of either the waiting 

readers or a single waiting writer. 

 

The structure of a writer process 

         

              while (true) { 

                        wait (wrt) ; 

                 

                             //    writing is performed 

                        signal (wrt) ; 

              } 

 

The structure of a reader process 

         

              while (true) { 

                       wait (mutex) ; 

                       readcount ++ ; 



                       if (readercount == 1)  wait (wrt) ; 

                       signal (mutex) 

                 

                               // reading is performed 

                        wait (mutex) ; 

                        readcount  - - ; 

                        if (redacount  == 0)  signal (wrt) ; 

                        signal (mutex) ; 

              } 

 

• Dining-Philosophers Problem 

Consider five philosophers sitting around a circular table. There is a bowl of rice in 

the centre of the table and five chopsticks – one in between each pair of 

philosophers. 

 

Initially, all the philosophers are in the thinking phase and while thinking, they 

make sure that they do not interact with each other. As time passes by, 

philosophers might feel hungry. When a philosopher feels hungry, he attempts to 

pick up the two chopsticks kept in close proximity to him ( that are in between him 

and his left and his right philosophers). If the philosophers on his left and right are 

not eating, he successfully gets the two chopsticks. With the two chopsticks in his 

hand, he starts eating. After he finishes eating, the chopsticks are positioned back 



on the table and the philosopher begins to think again. On the contrary, if  the 

philosopher on his left or right is already eating, then fails to grab the two 

chopsticks at the same time, and thus, has to wait. 

A solution to this problem is to represent each chopstick as a semaphore, and 

philosophers must grab or release chopsticks by executing wait operation or signal 

operation respectively on the appropriate semaphores. We use an array chopstick 

of size 5 where each element is initialized to 1. 

The structure of Philosopher i: 

While (true)  {  

          wait ( chopstick[i] ); 

      wait ( chopStick[ (i + 1) % 5] ); 

  

              //  eat 

      signal ( chopstick[i] ); 

      signal (chopstick[ (i + 1) % 5] ); 

  

                 //  think 

} 

This solution is simple and ensure that no two neighbors are eating at the same 

time. However, the solution is not free from deadlock. Suppose all the 

philosophers attempt to grab the chopsticks simultaneously and grab one 

chopstick successfully. In this case, all the elements of chopstick will be 0. Thus, 

when each philosopher attempts to grab the second chopstick, he will go in waiting 

state forever. 

Several possible remedies to the deadlock problem are available: 

• Allow at most four philosophers to be sitting simultaneously at the table. 

• Allow a philosopher to pick up his chopsticks only if both chopsticks are 

available. 

• Use an asymmetric solution; that is, an odd philosopher picks up first his left 

chopstick and then his right chopsticks, whereas an even philosopher picks 

up his  right chopstick and then her left chopstick. 

Dining-philosophers problem can be solved with the use of monitors. 



Monitors 

A monitor is a programming language construct which is also used to provide 

mutually exclusive access to critical sections. The programmer defines monitor 

type which consists of declaration of shared data (or variables), procedures or 

functions that access these variables, and initialization code. The general syntax of 

declaring syntax of declaring a monitor type is as follows: 

monitor <monitor-name> 

{ 

// shared data ( or variable) declarations 

data type <variable-name>; 

… 

// function (or procedure) declarations 

return_type <function_name> (parameters) 

{ 

// body of function 

} 

. 

. 

monitor-name() 

{ 

// initialization 

} 

} 

The variables defined inside a monitor can only be accessed by the functions 

defined within the monitor, and it is not feasible for any process to access these 

variables. Thus, if any process has to access these variables, it is only possible 

through the execution of the functions defined inside the monitor. Further, the 

monitor construct checks that only one process may be executing within the 

monitor at a given moment. But if a process is executing within the monitor, then 

other requesting processes are blocked and placed on an entry queue. 



 

Schematic view of a monitor 

However, the monitor construct, as defined so far, is not sufficiently powerful for 

modeling some synchronization schemes. For this purpose, we need to define 

additional synchronization mechanisms. These mechanisms are provided by the 

condition construct. We can define a mechanism by defining variables of 

condition type on which only two operations can be invoked: wait and signal.  

Suppose, programmer defines a variable C of condition type, then execution of 

the operation C.wait() by a process Pi, suspends the execution of Pi, and places 

it on a queue associated with the condition variable C. On the other hand, the 

execution of the operation C.signal() by a process Pi, resumes the execution of 

exactly one suspended process Pj, if any. It means that the execution of the 

signal operation by Pi allows other suspended process Pj to execute within the 

monitor. However, only one process is allowed to execute within the monitor at 

one time. Thus, monitor construct prevents Pj from resuming until Pi is executing 

in the monitor. There are following possibilities to handle this situation. 



• The process Pi must be suspended to allow Pj to resume and wait until Pj 

leaves the monitor. 

• The process Pj must remain suspended until Pi leaves the monitor. 

• The process Pi must execute the signal operation as its last statement in 

the monitor so that Pj can resume immediately. 

The solution to the dining-philosophers problem is as follows: 

The distribution of the chopsticks is controlled by the monitor dp. Each 

philosopher, before starting to eat, must invoke the operation pickup(). This may 

result in the suspension of the philosopher process. After the successful 

completion of the operation, the philosopher may eat. Following this, the 

philosopher invokes the putdown() operation. Thus, philosopher i must invoke 

the operations pickup() and putdown() in the following sequence: 

 

dp.pickup(i); 

… 

eat 

… 

dp.putdown(i); 

 

 

monitor DP 

   {  

 enum { THINKING; HUNGRY, EATING) state [5] ; 

 condition self [5]; 

 void pickup (int i) {  

        state[i] = HUNGRY; 

        test(i); 

        if (state[i] != EATING) 

 self [i].wait; 

 } 

 

 

 



  

       void putdown (int i) {  

        state[i] = THINKING; 

                   // test left and right neighbors 

         test((i + 4) % 5); 

         test((i + 1) % 5); 

        } 

 

void test (int i) {  

         if ( (state[(i + 4) % 5] != EATING) && 

         (state[i] == HUNGRY) && 

         (state[(i + 1) % 5] != EATING) ) 

 {  

              state[i] = EATING ; 

      self[i].signal () ; 

          } 

  } 

       initialization_code() {  

        for (int i = 0; i < 5; i++) 

        state[i] = THINKING; 

 } 

} 

After eating is finished, each philosopher invokes putdown() operation before 

start thinking. This operation changes the state of philosopher process to thinking 

and then invoke  test((i + 4) % 5) and test((i + 1) % 5) operation for 

philosophers on his left and right side (one by one). This verifies whether the 

philosopher feels hungry, and if so then allows him to eat in case philosophers on 

his left and right side are not eating. 

 

 

 



DEADLOCKS 

 
In a multiprogramming environment several processes may compete for a fixed 

number of resources. A process requests resources and if the resources are not 

available at that time, it enters a wait state. It may happen that the waiting 

process will never gain access to the resources. Since those resources are being 

held by other waiting processes.  

 

For example, take a system with one tape drive and one plotter. Process P1 

request the tape drive and process P2 requests the plotter. Both requests are 

granted. Now P1 requests the plotter (without giving up the tape drive) and P2 

requests the tape drive (without giving up the plotter). Neither request can be 

granted so both processes enter a deadlock situation.  

 

A deadlock is a situation where a group of processes is permanently 

blocked as a result of each process having acquired a set of resources 

needed for its completion and having to wait for release of the remaining 

resources held by others thus making it impossible for any of the 

deadlocked processes to proceed. Deadlocks can occur in concurrent 

environments as a result of the uncontrolled granting of the system resources to 

the requesting processes. 

 

System Model: 

Deadlocks can occur when processes have been granted exclusive access to 

devices, files and so forth. A system consists of a finite number of resources to be 

distributed among a number of competing processes. The resources can be divided 

into several types, each of which consists of some number of identical instances. 

CPU cycles, memory space, files and I/O devices (such as printers and tape drives) 

are examples of resource types. If a system has two tape drives then the resource 

type tape drive has two instances. 

If a process requests an instance of a resource type, any type of that resource of 

class may satisfy the request. If this is not the case, then the instances are not 

identical and the resource type classes have not been properly defined. For 



example a system may have two printers These two printers may be defined into 

same printer class, if one is not concerned about type of printers (Dot Matrix or 

Laser Printer). 

Whenever a process wants to utilize any resource, it must make a request for it. It 

may request as many resources as it wants but it should not exceed the total 

number of resources available with the system. Once the process has utilized the 

resource it must release it. Therefore, a sequence of events to use a resource is: 

i. Request the resource: 

ii. Use the resource: 

iii. Release the resource: 

 

Request and release of resources can be accomplished through the wait and signal 

operations on semaphores. A system table records whether each resource is free 

or allocated, and, if a resource is allocated, to which process. If a process requests 

a resource that is currently allocated to another process, it can be added to a 

queue of processes waiting for this resource. 

 

Deadlock Characterization: 

Deadlocks are undesirable features. In the most of deadlock situation process is 

waiting for the release of some resource concurrently possessed by some 

deadlocked process. A deadlock situation can arise if the following four conditions 

hold simultaneously in a system: 

• Mutual exclusion 

• Hold and wait 

• No preemption 

• Circular wait 

 

Mutual exclusion: 

At least one resource must be held in a non-sharable mode; that is only one 

process at a time can use the resource. If another process requests that resource, 

the requesting process must be delayed until the resource has been released. 

 

 



Hold and wait: 

A process must be holding at least one resource and waiting to acquire additional 

resources that are currently being held by other processes. 

 

No preemption: 

Resources cannot be preempted; that is, a resource can be released only 

voluntarily by the process holding it, after that process has completed its task. 

 

Circular wait: 

A set {P0, P1, …, Pn} of waiting processes must exist such that P0 is waiting for a 

resource that is held by P1, P1 is waiting for a resource that is held by P2, …, Pn-1 

is waiting for a resource that is held by Pn, and Pn is waiting for a resource that is 

held by P0. 
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Graphic Representation of Resource Allocation 
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