
OPERATING SYSTEM

Unit 3 : Process Coordination

Basic Concepts of Concurrency:

A concurrent program specifies two or more sequential programs (a sequential

program specifies sequential execution of a list of statements) that may be

executed concurrently as parallel processes. For example, an airline reservation

system that involves processing transactions from many terminals has a natural

specifications as a concurrent program in which each terminal is controlled by its

own sequential process. Even when processes are not executed simultaneously, it

is often easier to structure as a collection of cooperating sequential processes

rather than as a single sequential program.

The operating system consists of a collection of such processes which are basically

two types:

• Operating system processes : Those that execute system code.

• User processes : Those that execute user's code.

A simple batch operating system can be viewed as 3 processes -a reader process,

an executor process and a printer process. The reader reads cards from card

reader and places card images in an input buffer. The executor process reads card

images from input buffer and performs the specified computation and store the

result in an output buffer. The printer process retrieves the data from the output

buffer and writes them to a printer Concurrent processing is the basis of operating

system which supports multiprogramming.

The operating system supports concurrent execution of a program without

necessarily supporting elaborate form of memory and file management. This form

of operation is also known as multitasking. Multiprogramming is a more general

concept in operating system that supports memory management and file

management features, in addition to supporting concurrent execution of programs.

Basic Concepts of Interprocess Communication and Synchronization:

In order to cooperate, concurrently executing processes must communicate and

synchronize. Interprocess communication is based on the use of shared

variables (variables that can be referenced by more than one process) or

message passing.

Synchronization is often necessary when processes communicate. Processes are

executed with unpredictable speeds. Yet to communicate one process must

perform some action such as setting the value of a variable or sending a message

that the other detects. This only works if the events perform an action or detect an

action are constrained to happen in that order. Thus one can view synchronization

as a set of constraints on the ordering of events. The programmer employs a

synchronization mechanism to delay execution of a process in order to satisfy such

constraints.

To make this concept more clear, consider the batch operating system again. A

shared buffer is used for communication between the reader process and the

executor process. These processes must be synchronized so that, for example, the

executor process never attempts to read data from the input if the buffer is

empty.

Race Condition:

Processes that are working together often share some common storage that one

can read and write. The shared storage may be in main memory or it may be a

shared file. Processes frequently need to communicate with other processes. When

a user wants to read from a file, it must tell the file process what it wants, then

the file process has to inform the disk process to read the required block.

When a process wants to print a file, it enters the file name in a special spooler

directory. Another process, the printer process, periodically checks to see if

there are any files to be printed, and if there are it prints them and then removes

their names from the directory.

Imagine that the spooler directory has a large number of slots, numbered 0, 1, 2,

…, each one capable of holding a file name. Also imagine that there are two shared

variables, out, which points to the next file to be printed, and in, which points to

the next free slot in the directory and these are available to all processes. At a

certain instant, slot 0 to 3 are empty and slots 4 to 6 are full. More or less

simultaneously, process A and B decided to queue a file for printing.

 Spooler directory

 4 abc

 5 prog.c

 6 prog.n

 7

Process A reads in and stores the value 7 in a local variable called

next_free_slot. Just then the CPU decides that process A has run long enough,

so it switches to process B. Process B also reads in and also gets a 7 so stores the

name of its file in slot 7 and updates in to be an 8. When process A runs again,

starting from the place it left off, it finds a 7 in next_free_slot and writes its file

name in slot 7, by erasing the name that process B just put there and then sets in

to 8. Situations like this, where two or more processes are reading or writing some

shared data and the final result depends on who runs precisely when, are called

race conditions.

out=4

in = 7

Process A

Process B

Serialization (To avoid concurrency related problem)

Make an operating system not to perform several tasks in parallel.

Two strategies to serializing processes in a multitasking environment:

• The Scheduler can be disabled

• A Protocol can be introduced

The Scheduler can be disabled

Scheduler can be disabled for a short period of time, to prevent control being

given to another process during a critical action like modifying shared data. This

will be inefficient on multiprocessor machines, since all other processors have to

be halted every time one wishes to execute a critical section.

A Protocol can be introduced

A protocol can be introduced which all programs sharing data must obey. The

protocol ensures that processes have to queue up to gain access to shared data.

The Critical-Section Problem:

Consider a system consisting of n processes. Each process has a segment of code

called critical section, in which the process may be changing common variables,

updating a table, writing a file, and so on. When one process is executing in its

critical section, no other process is to be allowed to execute in its critical section.

That is, no two processes are executing in their critical sections at the same time.

The section of code in a process that request permission to enter into its critical

section is called entry section and the critical section may be followed by an exit

section. The remaining code is the remainder section.

When one process is executing in its critical section, no other process is to be

executed in its critical section. Thus, the execution of critical sections by the

processes is mutually exclusive in time.

Do

{

 Entry Section - Section of code that request permission to

enter its critical section.

 Critical Section - It is a part of code in which it is necessary to

have exclusive access to shared data.

 Exit Section - Code for tasks just after exiting from the

critical section.

 Remainder Section - The remaining code.

} while (TRUE);

Fig: General structure of a typical process

A solution to the critical-section problem must satisfy the following three

requirements:

o Mutual Exclusion: If process Pi is executing in its critical section, then no

other processes can be executing in their critical sections.

o Progress: If no process is executing in its critical section and some

processes wish to enter their critical sections, then only those processes that

are not executing in their remainder section can participate in the decision

on which will enter its critical section next, and this selection can not be

postponed indefinitely.

o Bounded Waiting: There exists a bound on the number of times that other

processes are allowed to enter their critical sections after a process has

made a request to enter its critical section and before that request is

granted.

Mutual Exclusion:

Processes frequently need to communicate with other processes. When a user

wants to read from a file, it must tell the file process what it wants, then the file

process has to inform the disk process to read the required block.

Processes that are working together often share some common storage that one

can read and write. The shared storage may be in main memory or it may be a

shared file. Each process has segment of code, called a critical section, which

accesses shared memory or files. The key issue involving shared memory or

shared files is to find way to prohibit more than one process from reading and

writing the shared data at the same time. What we need is mutual exclusion -

some way of making sure that if one process is executing in its critical section, the

other processes will be excluded from doing the same thing.

An algorithm to support mutual exclusion. This is applicable for two processes

only.

Module Mutex

var

 P1busy, P2busy : boolean;

Process P1

begin

 while true do

 begin

 P1busy :=true;

 While P2busy do {keep testing};

 critical.-,section;

 P1busy:=false;

 Other_P1busy_Processing

 end {while}

end; {P1}

Process P2

begin

 while true do

 begin

 P2busy :=true;

 While P1busy do {keep testing};

 critical.-,section;

 P2busy:=false;

 Other_P2busy_Processing

 end {while}

end; {P2}

{Parent process}

begin (mutex)

 P1busy:=false;

 P2busy:=false;

 Initiate P1, P2

End (mutex)

Program : Mutual Exclusion Algorithm

P1 first sets P1busy and then tests P2busy to determine what to do next. When it

finds P2busy to be false, process P1 may safely proceed to the Critical section

knowing that no matter how the two processes may be interleaved, process P2 is

certain to find P2busy set and to stay away from the critical section. The single

change ensures mutual exclusion.

But consider a case where P1 wishes to enter the critical section and sets P1busy

to indicate the fact. If process P2 wishes to enter the critical section at the same

time and pre-empts process P1 just before P1 tests P2busy.

Process P2 may set P2busy and start looping while waiting for P1busy to become

false. When control is eventually returned to Process P1, it finds P2busy set and

starts looping while it waits for P2busy to become false. And so both processes are

looping forever, each awaiting the other one to clear the way.

In order to remove this kind of behavior, we must add another requirement to

occur in our algorithm. When more than one process wishes to enter the critical

section, the decision to grant entrance to one of them must be made in finite time.

Synchronization Hardware:

The critical-section problem can be solved in a uni-processor environment if we

can forbid interrupts to occur while a shared variable is being modified. In this

manner, we could be sure that the current sequence of instructions would be

allowed to execute in order without preemption. No other instructions would be

run, so no unexpected modifications could be made to the shared variable.

This solution is not feasible in a multiprocessor environment. Disabling interrupts

on a multiprocessor can be time-consuming, as the message is passed to all the

processors. This message passing delays entry into each critical section, and

system efficiency decreases.

Many machines provide special hardware instructions that allow us either to test

and modify the content of a word or to swap the contents of two words, atomically

- as one uninterruptible unit. These special instructions can be used to solve the

critical-section problem.

The TestAndSet instruction can be defined as follows:

Boolean TestAndSet (Boolean &target)

{

 Boolean rv = target;

 Target = true;

 Return rv;

}

Fig : Definition of the TestAndSet instruction.

The important characteristic is that this instruction is executed atomically. Thus, if

two TestAndSet instructions are executed simultaneously, each on a different CPU,

they will be executed sequentially in some arbitrary order. If the machine supports

the TestAndSet instruction, then we can implement mutual exclusion by declaring,

a Boolean variable lock, initialized to false. The structure of the process is as

follows:

do {

 while (TestAndSet(lock));

 critical section

 lock = false;

 remainder section

}while(1)

Fig : Mutual-exclusion implementation with TestAndSet.

The Swap instruction can be defined as follows:

void Swap(Boolean &a, Boolean &b)

{

 Boolean temp = a;

 a = b;

 b = temp;

}

Fig : Definition of the Swap instruction.

It operates on the contents of two words and it is executed atomically. If the

machine supports the Swap instruction, then the mutual exclusion can be provided

by declaring a variable lock and is initialized to false. In addition, each process

also has a local Boolean variable key. The structure of the process is as follows:

do {

 key = true;

 while (key == true)

 Swap(lock, key);

 Critical section

 lock = false;

 remainder section

}while(1);

These algorithms do not satisfy the bounded-waiting requirement. The following is

an algorithm that uses the TestAndSet instruction satisfies all the critical-section

requirements. The common data structures are

Boolean waiting[n];

Boolean lock;

These data structures are initialized to false.

do {

 waiting[i] = true;

 key = ture;

 while (waiting[i] && key)

 key = TestAndSet(lock);

 waiting[i] = flase;

 critical section

 j = (i+1) % n;

 while ((j != i) && !waiting[j])

 j = (j+1) % n;

 if (j == i)

 lock = false;

 else

 waiting[j] = false;

 remainder section

} while(1);

Fig : Bounded-waiting mutual exclusion with TestAndSet.

To prove that the mutual exclusion requirement is met, note that process Pi can

enter its critical section only if either waiting[i] == flase or key == flase. The

value of key can become false only if the TestAndSet is executed. The first process

to execute the TestAndSet will find key == flase; all others must wait. The

variable waiting[i] can become false only if another process leaves its critical

section; only one waiting[i] is set to false, maintaining the mutual exclusion

requirement.

To prove the progress requirement is met, note that a process exiting the critical

section either sets lock to false, or sets waiting[i] to false. Both allow a process

that is waiting to enter its critical section to proceed.

To prove the bounded-waiting requirement is met, when a process leaves its

critical section, it scans the array waiting in the cyclic ordering (i+1, i+2, … n-1, 0,

1, …, i-1). It designates the first process in this ordering that is in the entry

section (waiting[j] == true) as the next one to enter the critical section. Any

process waiting to enter its critical section will thus do so within n-1 turns.

Semaphores:

To overcome the mutual exclusion problem, a synchronization tool called

semaphore was proposed by Dijkstra which gained wide acceptance and

implemented in several commercial operating system through system calls or as

built-in functions.

A semaphore is a variable which accepts non-negative integer values and except

for initialization may be accessed and manipulated through two primitive

operations - wait and signal (originally defined as P and V respectively). These

names come from the Dutch words Problem (to test) and Verogen (to increment).

The two primitives take only argument as the semaphore variable, and may be

defined as follows.

a. Wait(s):

while S <= 0 do (keep testing);

S: = S-1;

wait operation decrements the value of semaphore variable as soon as it

would become non-negative.

b. Signal(s) S:= S+1;

Signal operation increments the value of semaphore variable.

Modifications to the integer value of the semaphore in the wait and signal

operations are executed indivisibly. That is, when one process modifies the

semaphore no other process can simultaneously modify the same semaphore

value. In addition in the case of wait(s), the testing of the integer value of S (S

<= 0) and its possible modification (S :=S-1) must also be executed without any

interruption.

Operating systems often distinguish between counting and binary semaphores.

The value of a counting semaphore can range over an unrestricted domain. The

value of a binary semaphore can range only between 0 and 1. On some

systems, binary semaphores are known as mutex locks, as they are locks that

provide mutual exclusion.

We can use binary semaphores to deal with the critical-section problem for

multiple processes. Counting semaphores can be used to control access to a given

resource consisting of a finite number of instances. The semaphore is initialized to

the number of resources available. Each process that wishes to use a resource

perform a wait() operation on the semaphore (thereby decrementing the count).

When a process releases a resource, it perform a signal() operation (incrementing

the count). When the count for the semaphore goes to 0, all resources are being

used. After that, processes that wish to use a resource will block until the count

becomes greater than 0.

Program 2 demonstrates the functioning of semaphores. In this program, there

are 3 processes to trying to share a common resource which is being protected by

a binary semaphore (bsem). (A binary semaphore is a variable which contains only

values of 0 and 1) by enforcing its use in mutually exclusive fashion. Each process

ensures the integrity of its critical section by opening it with a WAIT operation and

closing with a SIGNAL operation on the related semaphore, bsem in our example.

This way any number of concurrent processor might share the resource provided

each of these process use wait and signal operation.

The parent process in the program first initializes binary semaphore variable bsem

to 1 indicating that the source is available. As shown in the table (figure 8) at time

T1 no process is active to share the resource. But at time T2 all the three

processes become active and want to enter their critical sections to share the

resource by running the wait operation. At T2, the bsem is decremented to 0

which indicates that some processes has been given permission to enter the

critical section. At time T3, we find that it is P1 which has been given some

permission. One important thing is to be noted that only one process is allowed by

semaphore at a time to the critical section.

Once P1 is given the permission, it prevents other processes P2 & P3 to read the

value of bsem as 1 till the wait operation of P1 decrements bsem to 0. This is why

wait operation is executed without interruption.

After grabbing the control from semaphore P1 starts sharing the resource which is

depicted at time T3. At T4, P1 executes signal operation to release the resource

and comes out of its critical section. As shown in the table that the value of bsem

becomes 1 since the resource is now free.

The two remaining processes P2 and P3 have an equal chance to compete the

resource. In our example, process P3 become the next to enter the critical section

and to use the shared resource. At time T7, process P3 releases the resource and

semaphore variable bsem again becomes 1. At this time, the two other processes

P1 and P2 will attempt to compete for the resource and they have equal chance to

get access.

In our example, it is P2 which gets the chance but it might happens one of the

three processes could have never got the chance.

module Sem-mutex var bsem : semaphore; {binary
semaphore)
process P1;

Begin

 while true do

 wait (bsem);
 Critical_section
 Signal (bsem);

 The rest_of P1_Processing

end; (P1)

process P2;

Begin
 while true do

 wait (bsem);
 Critical-section;
 signal (bsem);
 The rest of P2-Processing

end; (P2)

process P3;

Begin
 while true do

 wait (bsem);
 Critical-section;
 signal (bsem);
 The rest of P3-Processing

end; (P3)

(Parent process)

begin (sem-mutex)
 bsem:= 1; (free)
 initiate P1, P2, P3;

end; (Mutux)

Program 2. Mutual Exclusion with Semaphore

Figure 8: Run time behaviour of Process

We also present a table (figure 8) showing the run time behaviour of three

processes and functioning of semaphore. Each column of the table show the

activity of a particular process and the value of a semaphore after certain action

has been taken on this process.

Classical Problems of Synchronization

• Bounded-Buffer Problem

To avoid the occurrence of race condition, we present a solution to the bounded-

buffer problem using semaphores. The biggest advantage of this solution using

semaphores is that it not only avoids the occurrence of race condition but also

allows to have size items in the buffer at the same time, thus, eliminating the

shortcomings of the solutions using shared memory. The following three

semaphores are used in this solution.

We assume that the pool consists of n buffers, each capable of holding one item.

The mutex semaphore provides mutual exclusion for accesses to the buffer pool

and is initialized to the value 1. The empty and full semaphores count the number

of empty and full buffers. The semaphore empty is initialized to the value n; the

semaphore full if initialized to the value 0.

The structure of the producer process

 while (true) {

 // produce an item

 wait (empty);

 wait (mutex);

 // add the item to the buffer

 signal (mutex);

 signal (full);

 }

The structure of the consumer process

 while (true) {

 wait (full);

 wait (mutex);

 // remove an item from buffer

 signal (mutex);

 signal (empty);

 // consume the removed item

 }

We can interpret these codes as the producer producing full buffers for the

consumer or as the consumer producing empty buffers for the producer.

• Readers and Writers Problem

Concurrently executing processes that are sharing a data object, such as a file or a

variable, fall into two groups: readers and writers. The processes in the readers

group want only to read the contents of the shared object, whereas, the

processes in writers group want to update (read and write) the value of shared

object. There is no problem if multiple readers access the shared object

simultaneously. However, if a writer and some other process (either a reader or

writer) access the shared object simultaneously, data may become inconsistent.

To ensure that such a problem does not arise, we must guarantee that when a

writer is accessing the shared object, no reader or writer accesses that shared

object. This synchronization problem is termed as readers-writers problem. The

readers-writers problem has several variations. The simplest one referred to as the

first reader-writer problem, requires that no reader will be kept waiting unless a

writer has already obtained permission to use the shared object. In other words,

no reader should wait for others readers to finish simply because a writer is

waiting. The second readers-writers problem requires that, once a writer is ready,

that writer performs its write as soon as possible. In other words, if a writer is

waiting to access the object, no new readers may start reading.

A solution to either problem may result in starvation. In the first case writers may

starve, in the second case, readers may starve.

Following is a solution to the first readers-writers problem. The reader process

share the following data structures:

semaphore mutex, wrt;

int readcount;

The semaphore mutex and wrt are initialized to 1 and readcount is initialized to 0.

The semaphore wrt is common to both reader and writer processes. The mutex

semaphore is used to ensure mutual exclusion when the variable readcount is

updated. The readcount variable keeps track of how many processes are currently

reading the object. The semaphore wrt functions as a mutual-exclusion semaphore

for the writers. It is also used by the first or last reader that enters or exists the

critical section. It is not used by readers who enter or exit while other readers are

in their critical section.

If a writer is in the critical section and n readers are waiting, then one reader is

queued on wrt, and n-1 readers are queued on mutex. Also, observe that, when a

writer executes signal(wrt), we may resume the execution of either the waiting

readers or a single waiting writer.

The structure of a writer process

 while (true) {

 wait (wrt) ;

 // writing is performed

 signal (wrt) ;

 }

The structure of a reader process

 while (true) {

 wait (mutex) ;

 readcount ++ ;

 if (readercount == 1) wait (wrt) ;

 signal (mutex)

 // reading is performed

 wait (mutex) ;

 readcount - - ;

 if (redacount == 0) signal (wrt) ;

 signal (mutex) ;

 }

• Dining-Philosophers Problem

Consider five philosophers sitting around a circular table. There is a bowl of rice in

the centre of the table and five chopsticks – one in between each pair of

philosophers.

Initially, all the philosophers are in the thinking phase and while thinking, they

make sure that they do not interact with each other. As time passes by,

philosophers might feel hungry. When a philosopher feels hungry, he attempts to

pick up the two chopsticks kept in close proximity to him (that are in between him

and his left and his right philosophers). If the philosophers on his left and right are

not eating, he successfully gets the two chopsticks. With the two chopsticks in his

hand, he starts eating. After he finishes eating, the chopsticks are positioned back

on the table and the philosopher begins to think again. On the contrary, if the

philosopher on his left or right is already eating, then fails to grab the two

chopsticks at the same time, and thus, has to wait.

A solution to this problem is to represent each chopstick as a semaphore, and

philosophers must grab or release chopsticks by executing wait operation or signal

operation respectively on the appropriate semaphores. We use an array chopstick

of size 5 where each element is initialized to 1.

The structure of Philosopher i:

While (true) {

 wait (chopstick[i]);

 wait (chopStick[(i + 1) % 5]);

 // eat

 signal (chopstick[i]);

 signal (chopstick[(i + 1) % 5]);

 // think

}

This solution is simple and ensure that no two neighbors are eating at the same

time. However, the solution is not free from deadlock. Suppose all the

philosophers attempt to grab the chopsticks simultaneously and grab one

chopstick successfully. In this case, all the elements of chopstick will be 0. Thus,

when each philosopher attempts to grab the second chopstick, he will go in waiting

state forever.

Several possible remedies to the deadlock problem are available:

• Allow at most four philosophers to be sitting simultaneously at the table.

• Allow a philosopher to pick up his chopsticks only if both chopsticks are

available.

• Use an asymmetric solution; that is, an odd philosopher picks up first his left

chopstick and then his right chopsticks, whereas an even philosopher picks

up his right chopstick and then her left chopstick.

Dining-philosophers problem can be solved with the use of monitors.

Monitors

A monitor is a programming language construct which is also used to provide

mutually exclusive access to critical sections. The programmer defines monitor

type which consists of declaration of shared data (or variables), procedures or

functions that access these variables, and initialization code. The general syntax of

declaring syntax of declaring a monitor type is as follows:

monitor <monitor-name>

{

// shared data (or variable) declarations

data type <variable-name>;

…

// function (or procedure) declarations

return_type <function_name> (parameters)

{

// body of function

}

.

.

monitor-name()

{

// initialization

}

}

The variables defined inside a monitor can only be accessed by the functions

defined within the monitor, and it is not feasible for any process to access these

variables. Thus, if any process has to access these variables, it is only possible

through the execution of the functions defined inside the monitor. Further, the

monitor construct checks that only one process may be executing within the

monitor at a given moment. But if a process is executing within the monitor, then

other requesting processes are blocked and placed on an entry queue.

Schematic view of a monitor

However, the monitor construct, as defined so far, is not sufficiently powerful for

modeling some synchronization schemes. For this purpose, we need to define

additional synchronization mechanisms. These mechanisms are provided by the

condition construct. We can define a mechanism by defining variables of

condition type on which only two operations can be invoked: wait and signal.

Suppose, programmer defines a variable C of condition type, then execution of

the operation C.wait() by a process Pi, suspends the execution of Pi, and places

it on a queue associated with the condition variable C. On the other hand, the

execution of the operation C.signal() by a process Pi, resumes the execution of

exactly one suspended process Pj, if any. It means that the execution of the

signal operation by Pi allows other suspended process Pj to execute within the

monitor. However, only one process is allowed to execute within the monitor at

one time. Thus, monitor construct prevents Pj from resuming until Pi is executing

in the monitor. There are following possibilities to handle this situation.

• The process Pi must be suspended to allow Pj to resume and wait until Pj

leaves the monitor.

• The process Pj must remain suspended until Pi leaves the monitor.

• The process Pi must execute the signal operation as its last statement in

the monitor so that Pj can resume immediately.

The solution to the dining-philosophers problem is as follows:

The distribution of the chopsticks is controlled by the monitor dp. Each

philosopher, before starting to eat, must invoke the operation pickup(). This may

result in the suspension of the philosopher process. After the successful

completion of the operation, the philosopher may eat. Following this, the

philosopher invokes the putdown() operation. Thus, philosopher i must invoke

the operations pickup() and putdown() in the following sequence:

dp.pickup(i);

…

eat

…

dp.putdown(i);

monitor DP

 {

 enum { THINKING; HUNGRY, EATING) state [5] ;

 condition self [5];

 void pickup (int i) {

 state[i] = HUNGRY;

 test(i);

 if (state[i] != EATING)

 self [i].wait;

 }

 void putdown (int i) {

 state[i] = THINKING;

 // test left and right neighbors

 test((i + 4) % 5);

 test((i + 1) % 5);

 }

void test (int i) {

 if ((state[(i + 4) % 5] != EATING) &&

 (state[i] == HUNGRY) &&

 (state[(i + 1) % 5] != EATING))

 {

 state[i] = EATING ;

 self[i].signal () ;

 }

 }

 initialization_code() {

 for (int i = 0; i < 5; i++)

 state[i] = THINKING;

 }

}

After eating is finished, each philosopher invokes putdown() operation before

start thinking. This operation changes the state of philosopher process to thinking

and then invoke test((i + 4) % 5) and test((i + 1) % 5) operation for

philosophers on his left and right side (one by one). This verifies whether the

philosopher feels hungry, and if so then allows him to eat in case philosophers on

his left and right side are not eating.

DEADLOCKS

In a multiprogramming environment several processes may compete for a fixed

number of resources. A process requests resources and if the resources are not

available at that time, it enters a wait state. It may happen that the waiting

process will never gain access to the resources. Since those resources are being

held by other waiting processes.

For example, take a system with one tape drive and one plotter. Process P1

request the tape drive and process P2 requests the plotter. Both requests are

granted. Now P1 requests the plotter (without giving up the tape drive) and P2

requests the tape drive (without giving up the plotter). Neither request can be

granted so both processes enter a deadlock situation.

A deadlock is a situation where a group of processes is permanently

blocked as a result of each process having acquired a set of resources

needed for its completion and having to wait for release of the remaining

resources held by others thus making it impossible for any of the

deadlocked processes to proceed. Deadlocks can occur in concurrent

environments as a result of the uncontrolled granting of the system resources to

the requesting processes.

System Model:

Deadlocks can occur when processes have been granted exclusive access to

devices, files and so forth. A system consists of a finite number of resources to be

distributed among a number of competing processes. The resources can be divided

into several types, each of which consists of some number of identical instances.

CPU cycles, memory space, files and I/O devices (such as printers and tape drives)

are examples of resource types. If a system has two tape drives then the resource

type tape drive has two instances.

If a process requests an instance of a resource type, any type of that resource of

class may satisfy the request. If this is not the case, then the instances are not

identical and the resource type classes have not been properly defined. For

example a system may have two printers These two printers may be defined into

same printer class, if one is not concerned about type of printers (Dot Matrix or

Laser Printer).

Whenever a process wants to utilize any resource, it must make a request for it. It

may request as many resources as it wants but it should not exceed the total

number of resources available with the system. Once the process has utilized the

resource it must release it. Therefore, a sequence of events to use a resource is:

i. Request the resource:

ii. Use the resource:

iii. Release the resource:

Request and release of resources can be accomplished through the wait and signal

operations on semaphores. A system table records whether each resource is free

or allocated, and, if a resource is allocated, to which process. If a process requests

a resource that is currently allocated to another process, it can be added to a

queue of processes waiting for this resource.

Deadlock Characterization:

Deadlocks are undesirable features. In the most of deadlock situation process is

waiting for the release of some resource concurrently possessed by some

deadlocked process. A deadlock situation can arise if the following four conditions

hold simultaneously in a system:

• Mutual exclusion

• Hold and wait

• No preemption

• Circular wait

Mutual exclusion:

At least one resource must be held in a non-sharable mode; that is only one

process at a time can use the resource. If another process requests that resource,

the requesting process must be delayed until the resource has been released.

Hold and wait:

A process must be holding at least one resource and waiting to acquire additional

resources that are currently being held by other processes.

No preemption:

Resources cannot be preempted; that is, a resource can be released only

voluntarily by the process holding it, after that process has completed its task.

Circular wait:

A set {P0, P1, …, Pn} of waiting processes must exist such that P0 is waiting for a

resource that is held by P1, P1 is waiting for a resource that is held by P2, …, Pn-1

is waiting for a resource that is held by Pn, and Pn is waiting for a resource that is

held by P0.

 Holding a Requesting a Deadlock situation

 resource resource

Graphic Representation of Resource Allocation

P1

R1

P1

R2

P1

P2

R2

R1

